Use the definition to find the derivative of $f(x)=\sqrt {x}$, for $x>0$. Is $f$ differentiable at zero? Explain.
$\lim_{t\rightarrow 0} \dfrac {\sqrt {x+t}-\sqrt {x}}{t}$
$=\lim_{t\rightarrow 0} \dfrac {\sqrt {x+t}-\sqrt {x}}{t} * \dfrac {\sqrt {x+t}+\sqrt {x}}{\sqrt {x+t}+\sqrt {x}}$
$=\lim_{t\rightarrow 0} \dfrac {x+t-x}{t[\sqrt {x+t}+\sqrt {x}]}$
$=\lim_{t\rightarrow 0} \dfrac {1}{\sqrt {x+t}+\sqrt {x}}$
$=\dfrac {1}{2\sqrt {x}}$
$f(x)=\sqrt {x}$ is not differentiable at $x=0$ because the limit of $T(x)=\dfrac {f(x)-f(x_0)}{x-x_0}$ as $x$ approaches zero does not exist.
$\lim_{x\rightarrow 0} \dfrac {\sqrt {x}-\sqrt {0}}{x-0}$
$=\lim_{x\rightarrow 0} \dfrac {1}{\sqrt {x}}$
$=\dfrac {1}{0}$ and is undefined.
No comments:
Post a Comment